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ABSTRACT 

Morphing materials allow us to create new modalities of 

interaction and fabrication by leveraging the materials’ 

dynamic behaviors. Yet, despite the ongoing rapid growth of 

computational tools within this realm, current developments 

are bottlenecked by the lack of an effective simulation 

method. As a result, existing design tools must trade-off 

between speed and accuracy to support a real-time 

interactive design scenario. In response, we introduce 

SimuLearn, a data-driven method that combines finite 

element analysis and machine learning to create real-time 

(0.61 seconds) and truthful (97% accuracy) morphing 
material simulators. We use mesh-like 4D printed structures 

to contextualize this method and prototype design tools to 

exemplify the design workflows and spaces enabled by a fast 

and accurate simulation method. Situating this work among 

existing literature, we believe SimuLearn is a timely addition 

to the HCI CAD toolbox that can enable the proliferation of 

morphing materials. 

Author Keywords 

Simulation; design tool; shape-changing interface; machine 

learning; 4D printing; computational fabrication.  

CSS Concepts 

• Human-centered computing~Human computer 

interaction (HCI); Interactive systems and tools; User 

interface programming.  

INTRODUCTION 
In recent years, the HCI community has become interested 

in using morphing materials to enable new modes of 

interactions. These materials allow us to create shape-
changing interfaces that are electricity-free and can respond 

to surrounding stimuli [37], the wearer’s physiological 

conditions [46], or to realize novel fabrication methods [41]. 

However, due to their spatiotemporal behaviors and 

nonlinear material properties, it is difficult to predict the 

performances of morphing materials design. As a result, 

conventional computer-aided design (CAD) tools often have 

to make tradeoffs between speed and accuracy. In HCI, this 

complication further poses a challenge in making design 

tools because both real-time interactivity and visual fidelity 

are desired to inform design decisions.  

 

Figure 1. SimuLearn overview - (A) the computational theme of 

SimuLearn enables fast and high-fidelity (B) forward design 

iterations and (C) inverse design optimizations. These 

workflows enable design spaces that demand both simulation 

speed and accuracy, such as (D) modularization (lampshade), 

(E) material-driven parametric design (table stand), and (F) 

interlocking mechanisms (decorative joinery). 

Existing simulation methods can be divided into three 

categories: geometrical methods, mass-spring models, and 
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finite element analysis (FEA). Geometrical methods predict 

material performance by modeling the relationship between 

design parameters and experimental data (e.g., associating 

the length [1, 41] or layer thickness [40] of a printed 

thermoplastic actuator with its resulting bending angle). 
While they are fast to compute, these methods often take few 

if any physical parameters into account, and thus are not 

physically accurate. Alternatively, mass-spring models [12] 

seek to incorporate some physical factors present in the 

actuation environment, but they cannot account for the 

complex, nonlinear physics inherent to morphing materials 

and are prone to diverge. Advanced methods such as elastic 

rods [5,31] are also restricted to certain material properties 

and shapes, thus having a limited morphing materials design 

space. In contrast, while FEA is physically-based, their sheer 

computational cost renders them unviable in interactive 

design tools [47]. More, morphing materials are often soft 
during transformation and have virtually infinite degrees of 

freedom, requiring high-resolution discrete models to avoid 

divergence, which further slows down the computation. 

While model reduction methods [2,44] can be used to 

achieve interactive FEA, they require pre- and re-processing 

whenever the model geometry is changed. Therefore, they 

are less ideal for supporting iterative design workflows.  

To address the need for an effective simulation method that 

allows an interactive design process of morphing materials, 

we propose SimuLearn, a data-driven simulation technique 

that combines FEA with machine learning (ML) to make 
physically accurate predictions in real-time (Figure 1C). This 

method takes FEA-generated data to ensure simulation 

accuracy and uses ML to generalize and achieve fast 

computation. W apply this concept to 4DMesh-like 2x2 grid 

structures [41] to demonstrate this simulation technique and 

showcase SimuLearn’s workflow applicability. Results 

show that SimuLearn can produce high-quality simulations 

(97% accuracy) in real-time (0.61 seconds, over 1000 times 

faster than state-of-the-art FEA models). While the accuracy 

requirements may differ between use scenarios, we show that 

CAD tools based on this simulator (Figure 1A) can readily 

afford various modalities of design workflows (forward, 
inverse, and hybrid) and support complex design tasks that 

require different levels of accuracy (in descending order: 

modularization, parametric design, and exploration), which 

are exemplified by three design examples derived with our 

CAD tool prototype. The contributions of this work include: 

1. A simulation method that combines FEA and ML 

to simulate morphing materials fast and accurately. 

2. An ML architecture based on graph 

convolutional network (GCN) that is adapted to 

topological morphing material systems. 

3. an exemplary simulator development pipeline 

for 2x2 grid structures that comprises data 

generation, model training, and CAD toolmaking 

4. a CAD tool prototype and design examples that 

demonstrate the enabled design space. 

RELATED WORK 

Simulation in Morphing Materials 

Geometrical abstraction-based simulators are often used in 

morphing materials design, and trade physical accuracy for 

fast computation. While the prediction results can visualize 

the transformation trend, they are not sufficiently accurate to 

support design tasks that require high precision like 

modularization. In relatively small scales, Thermorph [1], 

Printed Paper Actuator [39], A-line [40], and bioLogic [46] 

combined parametric geometries with forward kinematics to 
simulate tree-topological patterns, but this approach is 

incompatible with more complex or larger patterns like 

4DMesh [41] due to their omission of physical forces. To 

tackle more complex patterns, [32] and Geodesy [12,32] 

used linear mass-spring models to approximate the 

materials’ transformation. Still, this approach requires taking 

small time steps to avoid divergence, leading to long 

simulation rollout (i.e., a trial of simulation) time and cannot 

afford real-time CAD interactions and iterations. Similarly, 

although elastic rods [31] have been used to assist the design 

of deformable objects, their limitations (i.e., tradeoff 
between noncircular cross-section shapes or viscoelastic 

materials [5]) make them inapplicable to certain morphing 

materials design spaces (e.g., the viscoelastic transformation 

of [40,41,47]). Compared to these methods, SimuLearn can 

provide more accurate predictions and support larger design 

spaces while requiring similar or less computation time. 

Numerical methods like FEA have also been applied to 

predict material transformations [8] and are often used in 

standard commercial systems. These methods use 

physically-based material models and boundary conditions 

to produce more accurate results, and their accuracy allows 

for utility beyond visualization. For instance, FEA has been 
applied to design adaptive actuators [6], multi-stage 

transformations [6,7], and self-folding structures of complex 

topologies [50]. A recent work [47] also demonstrated using 

FEA as a backend engine to design robust artifacts made of 

composite materials. Yet, FEA involves establishing and 

solving large linear systems, making them time-consuming 

to perform even on supercomputing servers. Alternatively, 

Transformative Appetite [42] produced fast simulations by 

geometrically interpolating between precomputed FEA 

results, but this approach can only support a limited number 

of design parameters. Model reduction methods have also 
been used to achieve interactive FEA in animation [2] or 

material design [44]. Although they afford two-orders faster 

speeds, they also require precomputing the model’s input 

motion and material modes, which leads to a delay when 

launching the editor. Changing the model’s shape also 

requires reprocessing, thus making them less practical to use 

in the early stages of design where geometrical modifications 

are frequent. By contrast, SimuLearn uses abstract graphs to 

flexibly represent shapes that follow a specific topology and 

can take on more design variables while requiring little 

precomputation, leading to three-orders faster acceleration, 

larger design spaces, and better interactivity. 



Data-Driven Simulation 

Data-driven simulation methods have recently been used to 

accelerate simulation in various ways, such as numerical 

coarsening [10], subspace dynamics modeling [13], and 

reaction-diffusion [21]. These approaches use accurate 

simulators to trade precomputation effort for better runtime 

performance. When combined with ML, data-driven 

methods can also make simulations more accessible in 
various domains like fluid dynamics [20], biomechanics 

[22,24], and solid mechanics [29]. While ML-based 

techniques require additional data collection, and their 

generalizability are limited by the dataset, they also offer 

unique advantages such as parallelizability, end-to-end 

differentiability [49], and often three-orders faster speed. 

SimuLearn takes an identical approach and uses FEA as the 

source of data to ensure simulation accuracy. Moreover, in 

order to support the object-oriented modeling (i.e., 

constructing design by compositing elements) of morphing 

materials design, we take inspiration from the GCN in 
[3,26,34] and use graphical representations in this work. 

Unlike convolutional neural networks (CNN) [27] that 

require high-resolution voxelization/pixelization, GCN also 

takes advantage of the model’s intrinsic topology to 

represent them with fewer yet more effective features and 

make ML models easier to train.  

Functional Simulation in HCI 

Simulations have been widely used in HCI to make inverse 

design tools for various material types. For elastic materials, 

[9, 23,48] used variations of FEA to enable users to predict 

and design shape-changing interfaces with complex 

deformation behaviors. For rigid materials, Forte [11], 

AutoConnect [19], and [36,45] used physical simulations to 

augment design tools and produce structurally optimized 
objects. In architectural scales, TrussFab [18], and 

TrussFormer [17] also used interactive simulation to guide 

users to design pavilions that met structural demands. 

Other than design optimization, simulations also played a 

central role in computational fabrication. For instance, using 

simulation as a backend engine, Ion et al. [16] enabled users 

to create complex Metamaterial Mechanisms [15], [35,43] 

can optimally embed electronic components into 3D printed 

objects, and AutoConnect [19] empowered users to create 

3D printable and robust connectors. Sequential Support [28] 

also used simulations to harness time-dependent material 
dissolution as a fabrication strategy. Situated among this 

literature, we believe that SimuLearn’s speed and accuracy 

will allow available CAD tools to become more 

augmentative and effective in forward and inverse design 

tasks. Taking inspiration from Dream Lens [25], we also 

believe that SimuLearn can support generative tasks and 

allow users and computers to co-design morphing materials. 

OVERVIEW 

Material System 

Our 4D printing material system is based on polylactic acid 

(PLA) and is identical to the bending-based printing strategy 

of 4DMesh [41] (Figure 2). However, we constrain the grids 

to have a 2-cell by 2-cell configuration to simplify the ML 

problem space, and we opt to not use even smaller grids (i.e., 

1x1 grids, rectangles) due to their confined design space. 

While the length of the beams may vary, their width and 
thickness are set at 7.2 mm and 4 mm, respectively. The 

actuators are quarterly assigned to the beams (Figure 2C), 

and the maximum curvature was measured to be 1.95 

degrees/mm. We also make several improvements to 

4DMesh’s printing toolpath to facilitate FEA modeling 

(Figure 2A), which includes substituting the porous passive 

with solid (i.e., 100% infilled) constraint blocks and printing 

the joints as with alternating infill directions to minimize 

their transformation. 

Printed structures are fixed on an aluminum frame to remain 

still and submerged throughout actuation in an 80 °C water 

bath (Figure 2B). Note that the grids are glued to the 
aluminum stand at the central joint, corresponding to FEA’s 

fixed-joint assignments. Actuated grids are retrieved from 

water when the temperature drops below 60 °C, PLA’s 

resolidification temperature. In our batch-to-batch printing 

and actuation consistency tests, we observe that a 150x150 

mm2 grid takes 45 minutes to print, and the diagonal span of 

grids may vary by 4.09% (with respect to grid dimension) 

after actuation. This number is regarded as the baseline 

accuracy requirement of SimuLearn. 

 

Figure 2. Our 4D printing material system - (A) Grid structure 

and toolpath design, (B) actuation setup, and (C) quarterly 

assigned actuators (printed and actuated). Actuators are 

highlighted with an orange outline in (A) and (C).  

Algorithm Design 

SimuLearn’s implementation comprises two steps - dataset 

curation and ML model training. Dataset curation uses a 
physically-based FEA model to generate raw FEA results, 

which is later extracted to create a dataset for ML model 

training. Next, a GCN-based ML model learns from the 

dataset to become a generalized and accelerated simulator, 

which can then be used to compose design tools. In 

particular, SimuLearn relies on multilayer perceptron 

(MLP)-based GCN models to carry out fast computations. 



This ML model allows us to represent the design using 

coarse elements described with succinct yet critical features, 

which drastically cuts down the number of computational 

units (Figure 3). Leveraging MLPs as nonlinear regressors, 

SimuLearn can also simulate with large time steps without 
compromising accuracy. Moreover, MLPs and GCNs are 

based on rapid, vectorized computations, making SimuLearn 

faster to compute than FEA and even comparable with 

geometrical methods. 

 

Figure 3. Differences between SimuLearn and FEA. 

Figure 1A summarizes the computational theme of 

SimuLearn. Given an input design, we decompose the model 

into coarse elements represented by numeric features, 

compute pairwise interactions and elementwise updates with 

MLPs, integrate the update into the numeric features to 
derive the elements’ status at the next time step, and repeat 

these steps until the simulation converges (i.e., no further 

transformation). In this computational flow, each iteration of 

the steps is identical to making one simulation increment in 

FEA. We can also arrange multiple SimuLearn engines in 

sequence to tackle complex physical systems that involve 

multiple stages - such as the sequential transformation of 4D 

printed PLA due to stress-release and creeping (Figure 6A). 

Design Tool and Workflows 

We incorporate the trained SimuLearn model in a design tool 

to demonstrate the forward, hybrid, and inverse design 

workflows supported by a fast and accurate simulator. A 

forward design workflow allows users to iteratively modify 

and simulate the model until satisfaction (Figure 1B, 11), 
enabling them to explore design options with low latency and 

without a clear goal in mind.  On the other hand, an inverse 

design workflow (Figure 1C) helps users to achieve 

transformation goals when target shapes are identified. A 

hybrid workflow lies in between these two design modes - it 

allows the design tool to automate the objective aspects (e.g., 

optimizing design parameters towards a target shape) of the 

design process while enabling the users to enforce their 

subjective values (e.g., aesthetic concerns). 

IMPLEMENTATION DETAILS 

Dataset Curation 

FEA Modeling 

We use the analysis software Abaqus and follow [47] to 

establish a physically-based FEA model for our material 

system. This FEA model adopts a two-stage strategy to 

simulate 4D printed PLA: the first stage corresponds to the 

residual stress-induced transformation, and the second stage 

depicts PLA’s creeping under gravity. The accuracy of this 

FEA model is reported to be above 95%. We refer readers to 

[47] for more technical details. The FEA solvers are 
configured to output a smooth animation of transformation 

processes - the first stage solver outputs ten equally spaced 

frames by procedurally releasing 10% of the total residual 

stress. In contrast, the second stage solver outputs only one 

frame due to relatively small deformations. Lastly, we use 

Abaqus2Matlab [30] to convert FEA results into .csv files. 

Data Generation 

We use a parametric script to generate different grid designs 

and FEA input files. The script initializes a design as a 

regular 2x2 grid and varies its morphing behaviors by 

randomly moving vertex positions in-plane and assigning 

actuators (Figure 4A). As a result, the generated grids would 

have different shapes and transformation behaviors while 

being topologically consistent, allowing for using regular 
expressions during feature extraction. It is worth noting that 

the variance of the design parameters bounds the ML 

model’s generalizability, and if the ML model is presented 

with out-of-range grid design parameters, it is likely to 

produce less accurate results. Thus, in order to produce a 

simulator for a targeted design space, these factors should be 

taken into consideration and conveyed in the design tool. 

 

Figure 4. (A) Random grid design generation procedure. (B) 

FEA result of a randomly generated grid. 

Feature Extraction 

Computed FEA trials are used for feature extraction to obtain 

the training dataset. We rotate and mirror the simulation 

trials in-plane to eliminate orientational biases and procure 

more data points. At each timestep, a grid is represented as 

an abstract graph G = (A, N, E), in which the adjacency 

matrix A = {Aij}i=1...Ne, j=1...Nn describes the connectivity 

between joints and beams, and the node and edge feature 

matrices N = {Ni}i=1...Nn and E = {Ei}i=1...Ne encode the joints’ 

and beams’ feature vectors, respectively. 

Each edge feature vector Ei encodes the information of three 
cross-sections located at the start, center, and end of a beam. 

The coordinates of the four corner vertices describe the shape 

of a cross-section, and the residual stress is represented by 

the stress field located at the Gaussian quadratures [33] 

around each of the corners (Figure 5A). On the other hand, 



Ni uses eight corner vertices to encode a joint’s cuboid shape 

and omits the stress field information due to the lack of active 

transformation (Figure 5B). In addition to the physical 

information, Ni and Ei also have additional feature values to 

describe their design (i.e., a float value to indicate beam 
actuator assignments and a binary value to indicate fixed-end 

conditions of joints) and relative position to the fixed-end 

(i.e., the element’s center point). Lastly, for each adjacent 

joint-beam pair, Aij uses a non-zero number to encode their 

face-to-face adjacency mode (Figure 5C). 

 

Figure 5. The feature sampling points of (A)beams and (B) 

joints. (C) An illustration of different adjacency modes. 

 

Figure 6. The hierarchy of our ML model architecture. (A) 

Using two SimuLearn engines to approximate the two-stage 

FEA model. (B) The double IN architecture of a SimuLearn 

engine. (C) The MLP layout within an IN unit. 

Machine Learning Model 

Model Architecture 

Figure 6 provides a hierarchical overview of our ML model 
architecture. At the top level, the complete simulator consists 

of two SimuLearn engines that correspond to each stage of 

the FEA solver (Figure 6A). The first engine recursively 

updates the input grid ten times to capture the first FEA 

stage's incremental simulation, whereas the second engine 

only updates once. At the next level, taking inspiration from 

[34], each SimuLearn engine uses two sequentially arranged 
interaction networks (INs) [3] to compute a grid’s update 

(Figure 6B). Given Gt, a grid’s graphical representation at 

time t, the first IN allows for element-wise interactions to 

propagate throughout the grid by obtaining a latent graph Gt’ 

that abstractly describes the summed effect subjected by all 

other elements over a beam or joint’s transformation. The 

second IN then takes the concatenation of Gt and Gt’ to 

compute the input grid’s update ΔGt. Finally, the graph at the 

next timestep Gt+1 is obtained by adding ΔGt to Gt. 

 

Figure 7. Visualization of GN units’ forward computation. 

 

Algorithm 1. Interaction Network, IN 

 
    Input: Graph, G = (A, N, E) 

    for each Aij ≠ 0 ∈ A do // edge-node-edge interaction 

        for each Akj , k ≠ i ≠ 0 ∈ A do 

            Gather interaction pair Ei , Nj , Ek , Aij , Akj 

            Compute interaction Ieik = ɸene(Ei , Nj , Ek , Aij , Akj ) 

    for each Aji ≠ 0 ∈ A do // node-edge-node interaction 

        for each Ajk , k ≠ i ≠ 0 ∈ A do 

            Gather interaction pair Ni , Ej , Nk , Aji , Ajk 

            Compute interaction Ieik = ɸnen(Ni , Ej , Nk , Aji , Ajk ) 

    for each node Ni ∈ N do // node update 

        Aggregate Ini = Σj Inrj per receiver  
        Compute output, Ni

*= ɸn( Ni , Ini ) 

    for each edge Ec ∈ E do // edge update 

         Aggregate Iei = Σj Ierj per receiver  

        Compute output, Ei
* = ɸe( Ei , Iei ) 

    Output: Graph, G* = ( A , N* , E* ) 

 
ɸnen : node-edge-node interaction network 

ɸene : edge-node-edge interaction network 

ɸn : node output network 

ɸe : edge output network 

In : latent node interaction vector 

Ie : latent edge interaction vector 

INs are the fundamental building blocks of SimuLearn. 

Figure 6C characterizes an IN’s forward computation to 

obtain its output. First, the model uses two interaction MLPs 

(ɸnen for node-edge-node and ɸene for edge-node-edge 

interactions) to compute the pairwise interaction vectors (In 



or Ie whose length is a hyperparameter), which describes a 

neighbor’s influence over a receiver element. Next, for each 

element in the grid, the IN sums the interaction vectors that 

the element is the receiver of to obtain a convoluted 

interaction vector (Inconv or Ieconv) that represents the entire 
grid’s influence over its transformation. Lastly, the element’s 

corresponding output MLP (ɸn or ɸe) then takes the element’s 

feature and convoluted interaction vector to obtain their 

output (N* or E*). Figure 7 visualizes this computation flow, 

and Algorithm 1 is a snippet of the forward computation of 

an IN. In an interaction pair, the first three items (Ni , Ej , Nk 

or Ei , Nj , Ek) describe the sender, conduit, and receiver of 

interaction, and the last two items (Aij , Akj or Aji , Ajk) indicate 

the adjacency mode between the elements. 

Unsupervised Data Normalization 

In order to reduce redundant data variance and to improve 

feature quality, we statistically analyze the training dataset to 

produce normalizers for each MLP in our ML model. A 

normalizer applies a series of transformations to a data point 
to form the MLP’s input, including moving the interaction 

pairs or elements to the spatial origin to remove locational 

variance, using principal component analysis (PCA) to 

reduce feature dimensions, and using affine transformation 

to produce zero-mean, unit-variance inputs for MLPs. In our 

implementation, setting the PCA information cut-off to 98% 

leads to halving the feature lengths, enabling faster model 

convergence and reducing overfitting. Note that all latent 

vectors are omitted during normalization. 

 

Figure 8. Rollout results at t=10 predicted by (A) the baseline 

model and (B) a model trained with the dislocation penalty. 

Loss Function 

When training the model with mean squared loss (MSE) 
alone, the vertices located at the junction of joints and beams 

are likely to become dislocated (i.e., becoming separated) 

after simulation, which violates the grid’s topology and 

yields visually confusing results (Figure 8A). In, we add a 

penalty term to our objective function to constraint the model 

from producing vertex dislocation (Figure 8B): 

, where 

,

 

The first term Lreg is the MSE between the model output 

𝐺∗ = (𝐴,𝑁∗, 𝐸∗) and the FEA ground truth 𝐺 = (�̂�, �̂�), and 

the second term Ldisloc the penalty term that measures the 

summed vertex dislocation. V={Vi }i=1...N is the set of vertices 

encoded in N* and E*, and P={(i,j)}i, j=1...N, i ≠ j indexes 

supposedly contiguous point pairs in V. Lastly, ɑ is the 

penalty strength and is regarded as a hyperparameter. 

Model Training 

Each MLP in our model comprises five hidden layers of 

logarithmically decreasing widths (e.g., 2048, 1024, 512, 

256, 128). Since our model contains multiple MLPs and 

latent features, we train a SimuLearn engine as a deep 

network using batch gradient descent and an Adam 
optimizer. To improve the model’s resilience against 

accumulated errors during simulation rollout, noises are 

added to the input graphs during model training: 

 

Gt and G0 are a grid graphical representation at time t and 0, 

and Ɲ is a normal distribution with variance 𝛾. In other 

words, the noise is proportional to the Gt’s cumulative 

update, and 𝛾 defines the magnitude of the noise. Lastly, the 

hyperparameters of our method, ɑ, 𝛾, and dataset size, are 

determined with a hyperparameter grid-search (Figure 9). 

The optimal setting is identified as (a, 𝛾)  = (1.0, 0.1) for their 

small dislocation error. 

 

Figure 9. Hyperparameter search results for (A) noise strength 

and (B) dislocation penalty, (C) selected hyperparameter 

combinations, and (D) dataset size. 

RESULTS 

We use the data generator to obtain 4,377 2x2 grid FEA 

trials. Depending on the grid size, each trial takes 8 to 14 

minutes to compute (mean: 10.35 min.) on a consumer-grade 

desktop PC (8 core Intel i9-9900k processor at 5Ghz). The 

mean grid dimension (the largest span from the fixed-end to 

an outlying joint) is 94.44 mm (3rd and 96th percentile: 
65.64 and 124.39 mm), and the average beam length is 51.29 

mm (3rd percentile: 23.11 mm, 97th percentile: 80.19 mm). 

Performance Evaluation 

We benchmark a simulator with 2,000 randomly drawn FEA 

trials (1,600 for training, 400 as held-out test data). On 

average, a single rollout takes 0.61 seconds to complete 

(including input formatting, simulation, and writing result 

files), which is 1018x faster than using FEA on the same 

machine. SimuLearn also supports parallel, near real-time 

simulation using a GPU (1.94 seconds for 100 grids on an 



Nvidia RTX 2080Ti), which is difficult to achieve with FEA 

due to the sheer computational cost. When measuring vertex 

coordinate errors between SimuLearn’s predictions and FEA 

ground truths, the mean error is identified as 2.89 mm across 

all test data (Figure 10), which is 3.03% with respect to the 

dimension of grids (97th percentile: 6.93mm, 4.13%). 

 

Figure 10. Simulation rollout accuracy of 400 held-out data. 

 

Figure 11. Side-by-side comparison of SimuLearn, FEA, and 

physical ground truth. Grid size: 132.36 mm * 77.13 mm. 

 

Figure 12. SimuLearn accuracy versus real grids shown in the 

(A) lampshade and (B) aggregated table design. (units: mm) 

Compared to physical prototyping, SimuLearn allows users 

to preview a grid’s transformation x9000 faster (90 minutes 

for printing and triggering the grid shown in Figure 11). As 

for accuracy, since vertex coordinates are unavailable, we 

measure the distances between several feature point pairs and 

report the mean error to be 2.22% for the grids shown in 

Design Examples (Figure 12), anecdotally implying a 

97.78% accuracy with respect to the physical truth. While 

this number is inconclusive due to the limited number of 

samples, the error is lower than the fabrication error. Thus, it 
is sufficiently accurate to support design tools and tasks. In 

terms of smoothness, Figure 1C and 16B showed small 

changes in design parameters would not lead to drastic 

changes in simulation results. A more comprehensive 

experiment is also provided in the Supplementary Materials.  

Design Tool Implementation and Supported Workflows 

Forward Workflow 

The design tool is implemented as a Rhinoceros 3D and 

grasshopper script, such that users can model and simulate 

the grids in a single environment and generate fabrication 

files. When forward-designing a 2x2 grid, users can initialize 

its shape by choosing from a predefined library or by 

drawing the grid’s skeleton as polylines (Figure 13A) and 

assigning actuators to beams (Figure 13B). Simultaneously, 

a validation subroutine will check the design against 

topological constraints imposed by the material system and 
the dataset to ensure its compatibility with the simulator 

(Figure 15). Once validated, users can then use SimuLearn 

to predict the grids’ transformation and navigate between 

each timestep with a slide bar (Figure 13C). Users can make 

design decisions and manual iterations based on the 

simulation results, but the design tool also has a set of 

functions to assist users in achieving desired transformations 

(Figure 14). Once completed, the tool then processes the 

model design into G-code files for fabrication (Figure 13D). 

 

Figure 13. A forward design workflow - (A) initializing a grid 

by sketching its skeleton, (B) assigning actuators and fixed 

joints, (C) simulating transformation, and (D) export print files. 

Inverse and Hybrid Workflow 

In an inverse or hybrid design workflow, following the 

initialization of grid design, the user can specify vertex 

transformation goals as target points to the design tool 



(Figure 14A). The design tool then modifies each of the 

parameters (i.e., changing beam actuator assignments by ± 

0.25 or moving joint positions along octagonal directions 

with a specified distance) to generate design variations, 

batch-simulates their transformations, and compares the 
results against the target points to rank the effectiveness of 

design modifications. The rankings are determined by the 

averaged distance between target point pairs. In a hybrid 

design workflow, the top-five modifications are presented to 

the user to choose from (Figure 14B). In contrast, the top-

ranked update is automatically applied (Figure 1C) in an 

inverse design workflow. These steps can be repeated for as 

many times as the user specifies, and each epoch can be 

completed in near real-time (2 seconds for simulation and 

ranking, 8 seconds for rendering the interface). Qualitatively 

speaking, this gradient-free, brute-force method provides a 

simple yet effective way to perform design optimization. 

 

Figure 14. Inverse and hybrid design workflows. (A) User 

specifying transformation goals in the design tool. (B) The 

design tool suggesting ranked design modifications for the user. 

Design Validation 

During the modeling step, the validation subroutine provides 

visual cues to guide users to design grids that comply with 

the material system’s intrinsic topology. The design tool 

presents two types of messages to users: errors (Figure 15A, 

B) that make the grid topologically incompatible with the 

simulator and warnings (Figure 15C, D) that may affect 

simulation accuracy. From a user’s perspective, error 

messages will block the simulator from running until 

addressed, whereas warning messages will only prompt users 

to modify but do not hinder simulation. 

 

Figure 15. Validation messages showing (A) joint configuration 

error, (B) actuator length error, (C) beam length warning, and 

(D) grid size warning. 

DESIGN EXAMPLES 

We use three design examples to demonstrate the workflows 

enabled by SimuLearn - inverse design of a lampshade, 

hybrid design of an aggregated table, and forward design of 

a decorative joinery. The lampshade example demands the 

highest of simulation accuracy and smoothness due to the 

optimization task, whereas the joinery requires the least as 

simulations are only used to visualize transformations. 

Inverse Design Workflow: Modularized Lampshade 

SimuLearn’s accuracy affords design tasks that require high 

precision, such as patching surfaces to form larger structures 

[38]. In this example, the user first creates a surface model 
of the lampshade, but its large dimension makes it difficult 

to 4D print as a whole. Thus, the designer patches the surface 

with three repeating modules to make it more fabricable. 

Each module is fitted with a 2x2 grid (Figure 16A) by 

specifying target points for vertices, and the design is carried 

out using the design tool’s inverse design function (Figure 

16B). Once optimized, the user then manually reorients the 

modules back to the surface model to generate an assembly 

preview. The design tool makes 22 iterations and explores 

1,958 design variations in 12 minutes to bring the mean 

fitting error to 4.44 mm (i.e., the distance between target 
point pairs). Note that most of the computation time is used 

to render results into the design interface and the actual 

simulation time is less than 50 seconds. 

 

Figure 16. Lampshade design - (A) design scheme, (B) selected 

optimization epochs (epochs labeled at the bottom), and (C) 

assembled and (D, E) illuminated lampshade. 

Figure 16C-E shows the printed, actuated, and assembled 

lampshade design. When comparing SimuLearn results with 

the physical reality, the max errors are 3.95 mm (4.21%), 
2.422 mm (3.30%), and 3.572 mm (3.57%) for the top, 

middle, and bottom piece, respectively. The errors are 

sufficiently small and the modules are assembled without 

any noticeable issue. We report that the target shape is 

unachievable using previous methods because its geometry 

violates 4DMesh’s [41] algorithmic constraints. The folding- 



or wire-based strategy of [1,40] also cannot produce artifacts 

with sufficient structural strength. More, modularization also 

helps to compartmentalize printing time and material usage, 

thus helps to mitigate fabrication risks. This design also 

shows that a fast and accurate simulator like SimuLearn can 
help us produce larger-scaled 4D printing structures, further 

advancing the fabrication flexibility of 4D printing. 

 

Figure 17. Aggregated table design - (A) parametric design 

scheme, (B) the hybrid design workflow to change the 

aggregation’s shape, and (C) selected design variations. 

Hybrid Design Workflow: Aggregated Table 

This structure is created by connecting multiple cell-units to 

create a ring and stacking several rings to form the entire 

aggregation. A cell-unit is made of two intersecting 2x2 

grids, and their tangential lines determine the contact angle θ 

of the unit, which consequently decides the curvature of the 

aggregation (Figure 17A). In this parametric scheme, the 

designer cannot directly control the aggregation’s shape but 

have to indirectly change the cell-unit contact angle instead 

(Figure 17C). To do so, the designer uses the hybrid 
workflow to specify the design tool to bring two vertices 

closer or away from each other, then select from the ranked 

modifications to update the cell-unit. During this co-design 

process, the design tool suggests viable options based on the 

simulation results, and the designer makes aesthetic 

judgements to make sure the aggregation is aesthetically 

consistent throughout the structure (Figure 17B). Parametric 

design often requires high interactivity, and this modality of 

morphing materials design is only achievable with 

SimuLearn as a back-end engine. Other simulation methods 

will either make the design workflow impractically slow or 

lack the accuracy needed by parametric design schemes. 

 

Figure 18. Aggregated table (A) side, (B) top, and (C) inside 

view pictures, and (D) the weaving technique detail. 

The final design is achieved after seven iterations over 15 

minutes, in which only less than 1 minute is used for 

simulations. The max error between SimuLearn predictions 

and physical prototypes are 5.22 mm (8.02%) and 3.96 mm 

(5.95%) for the grids in the unit. The table is assembled using 
a Native American off-loom bead weaving technique (Figure 

18). The level of detail and structural overhangs make this 

design difficult to fabricate with conventional 3D printing 

methods, and it would also be uneconomical to print using 

dissolvable support materials. In total, sixty cell-units are 

used in to produce a 52.6 cm tall, 46.8 cm wide structure. 

Forward Design Workflow: Decorative Wood Joinery 

In this example, the designer is tasked to create a 4D printed 

diagonal support for a miter wood joint. The designer adopts 

a forward design workflow by manually modeling the grids. 

The simulations are used to avoid collisions, identify 

insertion hole placements, and predict interlocking behaviors 

(Figure 19A) between units. SimuLearn’s speed allows the 

designer to make quick iterations and explore various design 
options (Figure 19B). In total, the designer produces 4 design 

variations (4-8 iterations each) in 25 minutes (1.5 minutes for 

simulation and 22.5 minutes used for modeling). 

The final design (Figure 19C-E) comprises three 2x2 grids 

that interlock and fasten together by sequential actuation. 

The centerpiece is first actuated and assembled into the wood 

joint, then the two side pieces are actuated while being 

inserted into the wood panels’ slits to fasten the structure 

together. When compared to the physical reality, the max 

simulation errors were 2.80 mm (8.44%) and 3.09 mm 

(7.90%) for the center and side pieces, respectively. 
Noticeably, due to the model’s large size, the corner joint 

blocks appear distorted at the end of the simulation (Figure 

19F), but the prediction result still captures the trend of 

transformation and an approximative shape of the actuated 

grid, thus satisfies the accuracy demand of this design task. 



 

Figure 19. Wood joinery design - (A) Forward design scheme, 

(B) selected design variation, (C, D) side views and (E) details 

of the assembled design, and (F) transformation process. 

LIMITATIONS 

FEA Limitation 

SimuLearn’s accuracy is limited by the data source and is 

susceptible to the limitations of the FEA model. In this work, 

although our FEA model is physically accurate, it does not 

account for collisions during the transformation process. 

Although these phenomena are unlikely to occur in our 

material system due to their transformation capacity, future 

work may take inspiration from [3] to take account for 

collision and open new design spaces. 

ML Simulator Accuracy 

While our physical prototyping results showed that 

SimuLearn’s speed and accuracy could readily support and 

facilitate their design workflows and tasks, there is still room 

for performance improvements. For instance, our current 
method does not use the temporality of simulation trials to 

train the model. Inspired by [34], we speculate that adopting 

recurrent ML models may further improve the accuracy of 

SimuLearn. Incorporating other ML techniques such as 

encoder/decoder, system identification, or hierarchical 

convolution [26] may also lead to improved performances. 

Future works may also leverage our pipeline to generate 

larger datasets in order to mitigate the dimension issue 

observed in the decorative joinery design example. 

Development Cost 

SimuLearn trades development time for workflow 

conveniences by using FEA to curate large datasets for 

training ML-based simulators. In this work, we prioritize our 

data generation for the design parameters that we deem most 

important. To incorporating new design parameters, 

developers would have to curate new datasets to update the 

simulator. Indeed, when targeting at a more general design 
space, methods that do not require training on any possible 

topology may appear to be more economical. Yet, the 

development cost of SimuLearn can also be easily justified 

by its three-orders faster workflow acceleration and 

parallelizability, especially when the design tool is mass-

deployed or repeatedly used. We also believe that SimuLearn 

allows developers to compose augmentative design tools for 

well-established morphing material systems like 4D printing, 

thus contributing to the democratization of advanced 

fabrication technologies. 

FUTURE WORK 

Generalizability and Scalability 

While this work is adapted to a specific material system, 

SimuLearn’s algorithm is also adaptable to other material 

systems by exchanging the FEA model and/or the feature 

representation. E.g., SimuLearn can adapt to Geodesy [12] 
by describing the continuous shells as aggregations of 

rectangular patches, which are then represented by their 

corner points, or it can further adapt to Transformative 

Appetite [42] by swapping the FEA model from stress-

release PLA to swelling gel. Existing works have also 

validated the viability of ML-based physics in various 

engineering and design contexts [49]. 

 

Figure 20. Simulation results of topologically mutated grids - 

(A) a 2x2 grid with partial removal, (B) a 2x3 grid, and (C) a 

3x3 grid. (orange: SimuLearn result, grey: FEA ground truth). 

As for scalability, GCNs intrinsically generalize to designs 

that have different numbers of units and are adaptable to 

different length scales [3], and the only limitation is dataset 

coverage. Anecdotally, we observe that the simulator can 

generalize to unseen grid topologies (i.e., having missing or 
extra beams) if their geometrical dimensions are within the 



dataset’s coverage (Figure 20). Nevertheless, SimuLearn can 

also be trained to tackle topologically larger grids (e.g., a 4x4 

grid) by expanding the dataset to cover targeted topologies 

and increasing the degree of convolution in the ML 

architecture. Note that the computation speed would remain 
identical because the elementwise transformations can be 

computed in parallel. We speculate that while adapting 

SimuLearn to larger grids would quadratically scale up the 

parameter space (i.e., elements may locate further from the 

fixed joint and be subjected to higher magnitudes of 

stresses), the amount of element data available for training 

MLPs would also increase quadratically. Thus, it may be 

possible to achieve an identical accuracy using the same 

amount of FEA trials — though further research is necessary 

in order to validate this conjecture. Nonetheless, we argue 

that while the simulator is limited to 2x2 grids, its speed and 

accuracy affords users to design larger structures using a 
modularization approach with even higher efficiency than 

previous work [41]. 

SimuLearn-Based Design Agents 

Currently, the inverse design function optimizes the model 

with an unguided brute-force approach. Future works may 

consider using different optimization approaches to achieve 

better results. In particular, SimuLearn’s parallelizability and 

speed lend itself well to genetic algorithms and evolutionary 

computing that require frequent performance evaluations. 

More than being faster, SimuLearn also enables converting 

indifferentiable simulations like FEA into differentiable 

computations, which can be leveraged to create gradient-

based optimizers. Similar methods have also been shown in 
robotics for efficient control policy-finding [4] and co-design 

[14]. Situating this concept in HCI, SimuLearn as a backend 

engine will allow CAD tools to simulate, evaluate, and 

suggest designs in real-time to inform high-quality decisions. 

With SimuLearn’s debut, we also envision conversational 

design agents to emerge in the shape-changing interfaces and 

morphing materials context. 

CONCLUSION 

SimuLearn combines FEA and ML to enable physically 

accurate and real-time simulations for morphing materials. 

Results show that SimuLearn is nearly as accurate as state-

of-the-art methods while being orders of magnitude faster. It 

also enables design tools to become multimodal platforms 

that support a broad spectrum of design workflows. Beyond 
the grid- and PLA-based material system presented in this 

paper, we also believe that SimuLearn can generalize to other 

topological patterns or morphing materials by swapping the 

representation and FEA model. 

SimuLearn, as an enabling technology, is particularly well-

suited for the HCI community. Not only because of its 

effectiveness in improving design efficiency, but also 

because its interactivity allows users and computers to co-

design, paving the way for human-AI collaborations to 

unfold in the design field. We also believe that SimuLearn 

can augment morphing material CAD tools to become 

conversational, educative, and accessible to the public. As 

the HCI community accumulates growing interests toward 

harnessing active material behaviors, SimuLearn will likely 

enrich the available design and technology toolbox and 

empower us to unfold the potentials of active, smart, and 
morphable materials. With this vision, we seek to 

democratize SimuLearn by sharing its source codes at 

https://github.com/morphing-matter-lab/SimuLearn. 
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