
SimuLearn: Fast and Accurate Simulator to Support
Morphing Materials Design and Workflows

Humphrey Yang1, Kuanren Qian2, Haolin Liu2, Yuxuan Yu2, Jianzhe Gu1, Matthew McGehee3,

Yongjie Jessica Zhang2, Lining Yao1

1HCI Institute,

Carnegie Mellon University

{hanliny, jianzheg,

liningy}@andrew.cmu.edu

2Mechanical Engineering,

Carnegie Mellon University

{kuanrenq, haolinl, yuxuany1,

jessicaz}@andrew.cmu.edu

3School of Design,

Carnegie Mellon University

mmcgehee@andrew.cmu.edu

ABSTRACT

Morphing materials allow us to create new modalities of

interaction and fabrication by leveraging the materials’

dynamic behaviors. Yet, despite the ongoing rapid growth of

computational tools within this realm, current developments

are bottlenecked by the lack of an effective simulation

method. As a result, existing design tools must trade-off

between speed and accuracy to support a real-time

interactive design scenario. In response, we introduce

SimuLearn, a data-driven method that combines finite

element analysis and machine learning to create real-time

(0.61 seconds) and truthful (97% accuracy) morphing
material simulators. We use mesh-like 4D printed structures

to contextualize this method and prototype design tools to

exemplify the design workflows and spaces enabled by a fast

and accurate simulation method. Situating this work among

existing literature, we believe SimuLearn is a timely addition

to the HCI CAD toolbox that can enable the proliferation of

morphing materials.

Author Keywords

Simulation; design tool; shape-changing interface; machine

learning; 4D printing; computational fabrication.

CSS Concepts

• Human-centered computing~Human computer

interaction (HCI); Interactive systems and tools; User

interface programming.

INTRODUCTION
In recent years, the HCI community has become interested

in using morphing materials to enable new modes of

interactions. These materials allow us to create shape-
changing interfaces that are electricity-free and can respond

to surrounding stimuli [37], the wearer’s physiological

conditions [46], or to realize novel fabrication methods [41].

However, due to their spatiotemporal behaviors and

nonlinear material properties, it is difficult to predict the

performances of morphing materials design. As a result,

conventional computer-aided design (CAD) tools often have

to make tradeoffs between speed and accuracy. In HCI, this

complication further poses a challenge in making design

tools because both real-time interactivity and visual fidelity

are desired to inform design decisions.

Figure 1. SimuLearn overview - (A) the computational theme of

SimuLearn enables fast and high-fidelity (B) forward design

iterations and (C) inverse design optimizations. These

workflows enable design spaces that demand both simulation

speed and accuracy, such as (D) modularization (lampshade),

(E) material-driven parametric design (table stand), and (F)

interlocking mechanisms (decorative joinery).

Existing simulation methods can be divided into three

categories: geometrical methods, mass-spring models, and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

UIST ’20, October 20–23, 2020, Virtual Event, USA

© 2020 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-7514-6/20/10.

DOI: https://doi.org/10.1145/3379337.3415867

https://doi.org/10.1145/3379337.3415867

finite element analysis (FEA). Geometrical methods predict

material performance by modeling the relationship between

design parameters and experimental data (e.g., associating

the length [1, 41] or layer thickness [40] of a printed

thermoplastic actuator with its resulting bending angle).
While they are fast to compute, these methods often take few

if any physical parameters into account, and thus are not

physically accurate. Alternatively, mass-spring models [12]

seek to incorporate some physical factors present in the

actuation environment, but they cannot account for the

complex, nonlinear physics inherent to morphing materials

and are prone to diverge. Advanced methods such as elastic

rods [5,31] are also restricted to certain material properties

and shapes, thus having a limited morphing materials design

space. In contrast, while FEA is physically-based, their sheer

computational cost renders them unviable in interactive

design tools [47]. More, morphing materials are often soft
during transformation and have virtually infinite degrees of

freedom, requiring high-resolution discrete models to avoid

divergence, which further slows down the computation.

While model reduction methods [2,44] can be used to

achieve interactive FEA, they require pre- and re-processing

whenever the model geometry is changed. Therefore, they

are less ideal for supporting iterative design workflows.

To address the need for an effective simulation method that

allows an interactive design process of morphing materials,

we propose SimuLearn, a data-driven simulation technique

that combines FEA with machine learning (ML) to make
physically accurate predictions in real-time (Figure 1C). This

method takes FEA-generated data to ensure simulation

accuracy and uses ML to generalize and achieve fast

computation. W apply this concept to 4DMesh-like 2x2 grid

structures [41] to demonstrate this simulation technique and

showcase SimuLearn’s workflow applicability. Results

show that SimuLearn can produce high-quality simulations

(97% accuracy) in real-time (0.61 seconds, over 1000 times

faster than state-of-the-art FEA models). While the accuracy

requirements may differ between use scenarios, we show that

CAD tools based on this simulator (Figure 1A) can readily

afford various modalities of design workflows (forward,
inverse, and hybrid) and support complex design tasks that

require different levels of accuracy (in descending order:

modularization, parametric design, and exploration), which

are exemplified by three design examples derived with our

CAD tool prototype. The contributions of this work include:

1. A simulation method that combines FEA and ML

to simulate morphing materials fast and accurately.

2. An ML architecture based on graph

convolutional network (GCN) that is adapted to

topological morphing material systems.

3. an exemplary simulator development pipeline

for 2x2 grid structures that comprises data

generation, model training, and CAD toolmaking

4. a CAD tool prototype and design examples that

demonstrate the enabled design space.

RELATED WORK

Simulation in Morphing Materials

Geometrical abstraction-based simulators are often used in

morphing materials design, and trade physical accuracy for

fast computation. While the prediction results can visualize

the transformation trend, they are not sufficiently accurate to

support design tasks that require high precision like

modularization. In relatively small scales, Thermorph [1],

Printed Paper Actuator [39], A-line [40], and bioLogic [46]

combined parametric geometries with forward kinematics to
simulate tree-topological patterns, but this approach is

incompatible with more complex or larger patterns like

4DMesh [41] due to their omission of physical forces. To

tackle more complex patterns, [32] and Geodesy [12,32]

used linear mass-spring models to approximate the

materials’ transformation. Still, this approach requires taking

small time steps to avoid divergence, leading to long

simulation rollout (i.e., a trial of simulation) time and cannot

afford real-time CAD interactions and iterations. Similarly,

although elastic rods [31] have been used to assist the design

of deformable objects, their limitations (i.e., tradeoff
between noncircular cross-section shapes or viscoelastic

materials [5]) make them inapplicable to certain morphing

materials design spaces (e.g., the viscoelastic transformation

of [40,41,47]). Compared to these methods, SimuLearn can

provide more accurate predictions and support larger design

spaces while requiring similar or less computation time.

Numerical methods like FEA have also been applied to

predict material transformations [8] and are often used in

standard commercial systems. These methods use

physically-based material models and boundary conditions

to produce more accurate results, and their accuracy allows

for utility beyond visualization. For instance, FEA has been
applied to design adaptive actuators [6], multi-stage

transformations [6,7], and self-folding structures of complex

topologies [50]. A recent work [47] also demonstrated using

FEA as a backend engine to design robust artifacts made of

composite materials. Yet, FEA involves establishing and

solving large linear systems, making them time-consuming

to perform even on supercomputing servers. Alternatively,

Transformative Appetite [42] produced fast simulations by

geometrically interpolating between precomputed FEA

results, but this approach can only support a limited number

of design parameters. Model reduction methods have also
been used to achieve interactive FEA in animation [2] or

material design [44]. Although they afford two-orders faster

speeds, they also require precomputing the model’s input

motion and material modes, which leads to a delay when

launching the editor. Changing the model’s shape also

requires reprocessing, thus making them less practical to use

in the early stages of design where geometrical modifications

are frequent. By contrast, SimuLearn uses abstract graphs to

flexibly represent shapes that follow a specific topology and

can take on more design variables while requiring little

precomputation, leading to three-orders faster acceleration,

larger design spaces, and better interactivity.

Data-Driven Simulation

Data-driven simulation methods have recently been used to

accelerate simulation in various ways, such as numerical

coarsening [10], subspace dynamics modeling [13], and

reaction-diffusion [21]. These approaches use accurate

simulators to trade precomputation effort for better runtime

performance. When combined with ML, data-driven

methods can also make simulations more accessible in
various domains like fluid dynamics [20], biomechanics

[22,24], and solid mechanics [29]. While ML-based

techniques require additional data collection, and their

generalizability are limited by the dataset, they also offer

unique advantages such as parallelizability, end-to-end

differentiability [49], and often three-orders faster speed.

SimuLearn takes an identical approach and uses FEA as the

source of data to ensure simulation accuracy. Moreover, in

order to support the object-oriented modeling (i.e.,

constructing design by compositing elements) of morphing

materials design, we take inspiration from the GCN in
[3,26,34] and use graphical representations in this work.

Unlike convolutional neural networks (CNN) [27] that

require high-resolution voxelization/pixelization, GCN also

takes advantage of the model’s intrinsic topology to

represent them with fewer yet more effective features and

make ML models easier to train.

Functional Simulation in HCI

Simulations have been widely used in HCI to make inverse

design tools for various material types. For elastic materials,

[9, 23,48] used variations of FEA to enable users to predict

and design shape-changing interfaces with complex

deformation behaviors. For rigid materials, Forte [11],

AutoConnect [19], and [36,45] used physical simulations to

augment design tools and produce structurally optimized
objects. In architectural scales, TrussFab [18], and

TrussFormer [17] also used interactive simulation to guide

users to design pavilions that met structural demands.

Other than design optimization, simulations also played a

central role in computational fabrication. For instance, using

simulation as a backend engine, Ion et al. [16] enabled users

to create complex Metamaterial Mechanisms [15], [35,43]

can optimally embed electronic components into 3D printed

objects, and AutoConnect [19] empowered users to create

3D printable and robust connectors. Sequential Support [28]

also used simulations to harness time-dependent material
dissolution as a fabrication strategy. Situated among this

literature, we believe that SimuLearn’s speed and accuracy

will allow available CAD tools to become more

augmentative and effective in forward and inverse design

tasks. Taking inspiration from Dream Lens [25], we also

believe that SimuLearn can support generative tasks and

allow users and computers to co-design morphing materials.

OVERVIEW

Material System

Our 4D printing material system is based on polylactic acid

(PLA) and is identical to the bending-based printing strategy

of 4DMesh [41] (Figure 2). However, we constrain the grids

to have a 2-cell by 2-cell configuration to simplify the ML

problem space, and we opt to not use even smaller grids (i.e.,

1x1 grids, rectangles) due to their confined design space.

While the length of the beams may vary, their width and
thickness are set at 7.2 mm and 4 mm, respectively. The

actuators are quarterly assigned to the beams (Figure 2C),

and the maximum curvature was measured to be 1.95

degrees/mm. We also make several improvements to

4DMesh’s printing toolpath to facilitate FEA modeling

(Figure 2A), which includes substituting the porous passive

with solid (i.e., 100% infilled) constraint blocks and printing

the joints as with alternating infill directions to minimize

their transformation.

Printed structures are fixed on an aluminum frame to remain

still and submerged throughout actuation in an 80 °C water

bath (Figure 2B). Note that the grids are glued to the
aluminum stand at the central joint, corresponding to FEA’s

fixed-joint assignments. Actuated grids are retrieved from

water when the temperature drops below 60 °C, PLA’s

resolidification temperature. In our batch-to-batch printing

and actuation consistency tests, we observe that a 150x150

mm2 grid takes 45 minutes to print, and the diagonal span of

grids may vary by 4.09% (with respect to grid dimension)

after actuation. This number is regarded as the baseline

accuracy requirement of SimuLearn.

Figure 2. Our 4D printing material system - (A) Grid structure

and toolpath design, (B) actuation setup, and (C) quarterly

assigned actuators (printed and actuated). Actuators are

highlighted with an orange outline in (A) and (C).

Algorithm Design

SimuLearn’s implementation comprises two steps - dataset

curation and ML model training. Dataset curation uses a
physically-based FEA model to generate raw FEA results,

which is later extracted to create a dataset for ML model

training. Next, a GCN-based ML model learns from the

dataset to become a generalized and accelerated simulator,

which can then be used to compose design tools. In

particular, SimuLearn relies on multilayer perceptron

(MLP)-based GCN models to carry out fast computations.

This ML model allows us to represent the design using

coarse elements described with succinct yet critical features,

which drastically cuts down the number of computational

units (Figure 3). Leveraging MLPs as nonlinear regressors,

SimuLearn can also simulate with large time steps without
compromising accuracy. Moreover, MLPs and GCNs are

based on rapid, vectorized computations, making SimuLearn

faster to compute than FEA and even comparable with

geometrical methods.

Figure 3. Differences between SimuLearn and FEA.

Figure 1A summarizes the computational theme of

SimuLearn. Given an input design, we decompose the model

into coarse elements represented by numeric features,

compute pairwise interactions and elementwise updates with

MLPs, integrate the update into the numeric features to
derive the elements’ status at the next time step, and repeat

these steps until the simulation converges (i.e., no further

transformation). In this computational flow, each iteration of

the steps is identical to making one simulation increment in

FEA. We can also arrange multiple SimuLearn engines in

sequence to tackle complex physical systems that involve

multiple stages - such as the sequential transformation of 4D

printed PLA due to stress-release and creeping (Figure 6A).

Design Tool and Workflows

We incorporate the trained SimuLearn model in a design tool

to demonstrate the forward, hybrid, and inverse design

workflows supported by a fast and accurate simulator. A

forward design workflow allows users to iteratively modify

and simulate the model until satisfaction (Figure 1B, 11),
enabling them to explore design options with low latency and

without a clear goal in mind. On the other hand, an inverse

design workflow (Figure 1C) helps users to achieve

transformation goals when target shapes are identified. A

hybrid workflow lies in between these two design modes - it

allows the design tool to automate the objective aspects (e.g.,

optimizing design parameters towards a target shape) of the

design process while enabling the users to enforce their

subjective values (e.g., aesthetic concerns).

IMPLEMENTATION DETAILS

Dataset Curation

FEA Modeling

We use the analysis software Abaqus and follow [47] to

establish a physically-based FEA model for our material

system. This FEA model adopts a two-stage strategy to

simulate 4D printed PLA: the first stage corresponds to the

residual stress-induced transformation, and the second stage

depicts PLA’s creeping under gravity. The accuracy of this

FEA model is reported to be above 95%. We refer readers to

[47] for more technical details. The FEA solvers are
configured to output a smooth animation of transformation

processes - the first stage solver outputs ten equally spaced

frames by procedurally releasing 10% of the total residual

stress. In contrast, the second stage solver outputs only one

frame due to relatively small deformations. Lastly, we use

Abaqus2Matlab [30] to convert FEA results into .csv files.

Data Generation

We use a parametric script to generate different grid designs

and FEA input files. The script initializes a design as a

regular 2x2 grid and varies its morphing behaviors by

randomly moving vertex positions in-plane and assigning

actuators (Figure 4A). As a result, the generated grids would

have different shapes and transformation behaviors while

being topologically consistent, allowing for using regular
expressions during feature extraction. It is worth noting that

the variance of the design parameters bounds the ML

model’s generalizability, and if the ML model is presented

with out-of-range grid design parameters, it is likely to

produce less accurate results. Thus, in order to produce a

simulator for a targeted design space, these factors should be

taken into consideration and conveyed in the design tool.

Figure 4. (A) Random grid design generation procedure. (B)

FEA result of a randomly generated grid.

Feature Extraction

Computed FEA trials are used for feature extraction to obtain

the training dataset. We rotate and mirror the simulation

trials in-plane to eliminate orientational biases and procure

more data points. At each timestep, a grid is represented as

an abstract graph G = (A, N, E), in which the adjacency

matrix A = {Aij}i=1...Ne, j=1...Nn describes the connectivity

between joints and beams, and the node and edge feature

matrices N = {Ni}i=1...Nn and E = {Ei}i=1...Ne encode the joints’

and beams’ feature vectors, respectively.

Each edge feature vector Ei encodes the information of three
cross-sections located at the start, center, and end of a beam.

The coordinates of the four corner vertices describe the shape

of a cross-section, and the residual stress is represented by

the stress field located at the Gaussian quadratures [33]

around each of the corners (Figure 5A). On the other hand,

Ni uses eight corner vertices to encode a joint’s cuboid shape

and omits the stress field information due to the lack of active

transformation (Figure 5B). In addition to the physical

information, Ni and Ei also have additional feature values to

describe their design (i.e., a float value to indicate beam
actuator assignments and a binary value to indicate fixed-end

conditions of joints) and relative position to the fixed-end

(i.e., the element’s center point). Lastly, for each adjacent

joint-beam pair, Aij uses a non-zero number to encode their

face-to-face adjacency mode (Figure 5C).

Figure 5. The feature sampling points of (A)beams and (B)

joints. (C) An illustration of different adjacency modes.

Figure 6. The hierarchy of our ML model architecture. (A)

Using two SimuLearn engines to approximate the two-stage

FEA model. (B) The double IN architecture of a SimuLearn

engine. (C) The MLP layout within an IN unit.

Machine Learning Model

Model Architecture

Figure 6 provides a hierarchical overview of our ML model
architecture. At the top level, the complete simulator consists

of two SimuLearn engines that correspond to each stage of

the FEA solver (Figure 6A). The first engine recursively

updates the input grid ten times to capture the first FEA

stage's incremental simulation, whereas the second engine

only updates once. At the next level, taking inspiration from

[34], each SimuLearn engine uses two sequentially arranged
interaction networks (INs) [3] to compute a grid’s update

(Figure 6B). Given Gt, a grid’s graphical representation at

time t, the first IN allows for element-wise interactions to

propagate throughout the grid by obtaining a latent graph Gt’

that abstractly describes the summed effect subjected by all

other elements over a beam or joint’s transformation. The

second IN then takes the concatenation of Gt and Gt’ to

compute the input grid’s update ΔGt. Finally, the graph at the

next timestep Gt+1 is obtained by adding ΔGt to Gt.

Figure 7. Visualization of GN units’ forward computation.

Algorithm 1. Interaction Network, IN

 Input: Graph, G = (A, N, E)

 for each Aij ≠ 0 ∈ A do // edge-node-edge interaction

 for each Akj , k ≠ i ≠ 0 ∈ A do

 Gather interaction pair Ei , Nj , Ek , Aij , Akj

 Compute interaction Ieik = ɸene(Ei , Nj , Ek , Aij , Akj)

 for each Aji ≠ 0 ∈ A do // node-edge-node interaction

 for each Ajk , k ≠ i ≠ 0 ∈ A do

 Gather interaction pair Ni , Ej , Nk , Aji , Ajk

 Compute interaction Ieik = ɸnen(Ni , Ej , Nk , Aji , Ajk)

 for each node Ni ∈ N do // node update

 Aggregate Ini = Σj Inrj per receiver
 Compute output, Ni

*= ɸn(Ni , Ini)

 for each edge Ec ∈ E do // edge update

 Aggregate Iei = Σj Ierj per receiver

 Compute output, Ei
* = ɸe(Ei , Iei)

 Output: Graph, G* = (A , N* , E*)

ɸnen : node-edge-node interaction network

ɸene : edge-node-edge interaction network

ɸn : node output network

ɸe : edge output network

In : latent node interaction vector

Ie : latent edge interaction vector

INs are the fundamental building blocks of SimuLearn.

Figure 6C characterizes an IN’s forward computation to

obtain its output. First, the model uses two interaction MLPs

(ɸnen for node-edge-node and ɸene for edge-node-edge

interactions) to compute the pairwise interaction vectors (In

or Ie whose length is a hyperparameter), which describes a

neighbor’s influence over a receiver element. Next, for each

element in the grid, the IN sums the interaction vectors that

the element is the receiver of to obtain a convoluted

interaction vector (Inconv or Ieconv) that represents the entire
grid’s influence over its transformation. Lastly, the element’s

corresponding output MLP (ɸn or ɸe) then takes the element’s

feature and convoluted interaction vector to obtain their

output (N* or E*). Figure 7 visualizes this computation flow,

and Algorithm 1 is a snippet of the forward computation of

an IN. In an interaction pair, the first three items (Ni , Ej , Nk

or Ei , Nj , Ek) describe the sender, conduit, and receiver of

interaction, and the last two items (Aij , Akj or Aji , Ajk) indicate

the adjacency mode between the elements.

Unsupervised Data Normalization

In order to reduce redundant data variance and to improve

feature quality, we statistically analyze the training dataset to

produce normalizers for each MLP in our ML model. A

normalizer applies a series of transformations to a data point
to form the MLP’s input, including moving the interaction

pairs or elements to the spatial origin to remove locational

variance, using principal component analysis (PCA) to

reduce feature dimensions, and using affine transformation

to produce zero-mean, unit-variance inputs for MLPs. In our

implementation, setting the PCA information cut-off to 98%

leads to halving the feature lengths, enabling faster model

convergence and reducing overfitting. Note that all latent

vectors are omitted during normalization.

Figure 8. Rollout results at t=10 predicted by (A) the baseline

model and (B) a model trained with the dislocation penalty.

Loss Function

When training the model with mean squared loss (MSE)
alone, the vertices located at the junction of joints and beams

are likely to become dislocated (i.e., becoming separated)

after simulation, which violates the grid’s topology and

yields visually confusing results (Figure 8A). In, we add a

penalty term to our objective function to constraint the model

from producing vertex dislocation (Figure 8B):

, where

,

The first term Lreg is the MSE between the model output

𝐺∗ = (𝐴,𝑁∗, 𝐸∗) and the FEA ground truth 𝐺 = (�̂�, �̂�), and

the second term Ldisloc the penalty term that measures the

summed vertex dislocation. V={Vi }i=1...N is the set of vertices

encoded in N* and E*, and P={(i,j)}i, j=1...N, i ≠ j indexes

supposedly contiguous point pairs in V. Lastly, ɑ is the

penalty strength and is regarded as a hyperparameter.

Model Training

Each MLP in our model comprises five hidden layers of

logarithmically decreasing widths (e.g., 2048, 1024, 512,

256, 128). Since our model contains multiple MLPs and

latent features, we train a SimuLearn engine as a deep

network using batch gradient descent and an Adam
optimizer. To improve the model’s resilience against

accumulated errors during simulation rollout, noises are

added to the input graphs during model training:

Gt and G0 are a grid graphical representation at time t and 0,

and Ɲ is a normal distribution with variance 𝛾. In other

words, the noise is proportional to the Gt’s cumulative

update, and 𝛾 defines the magnitude of the noise. Lastly, the

hyperparameters of our method, ɑ, 𝛾, and dataset size, are

determined with a hyperparameter grid-search (Figure 9).

The optimal setting is identified as (a, 𝛾) = (1.0, 0.1) for their

small dislocation error.

Figure 9. Hyperparameter search results for (A) noise strength

and (B) dislocation penalty, (C) selected hyperparameter

combinations, and (D) dataset size.

RESULTS

We use the data generator to obtain 4,377 2x2 grid FEA

trials. Depending on the grid size, each trial takes 8 to 14

minutes to compute (mean: 10.35 min.) on a consumer-grade

desktop PC (8 core Intel i9-9900k processor at 5Ghz). The

mean grid dimension (the largest span from the fixed-end to

an outlying joint) is 94.44 mm (3rd and 96th percentile:
65.64 and 124.39 mm), and the average beam length is 51.29

mm (3rd percentile: 23.11 mm, 97th percentile: 80.19 mm).

Performance Evaluation

We benchmark a simulator with 2,000 randomly drawn FEA

trials (1,600 for training, 400 as held-out test data). On

average, a single rollout takes 0.61 seconds to complete

(including input formatting, simulation, and writing result

files), which is 1018x faster than using FEA on the same

machine. SimuLearn also supports parallel, near real-time

simulation using a GPU (1.94 seconds for 100 grids on an

Nvidia RTX 2080Ti), which is difficult to achieve with FEA

due to the sheer computational cost. When measuring vertex

coordinate errors between SimuLearn’s predictions and FEA

ground truths, the mean error is identified as 2.89 mm across

all test data (Figure 10), which is 3.03% with respect to the

dimension of grids (97th percentile: 6.93mm, 4.13%).

Figure 10. Simulation rollout accuracy of 400 held-out data.

Figure 11. Side-by-side comparison of SimuLearn, FEA, and

physical ground truth. Grid size: 132.36 mm * 77.13 mm.

Figure 12. SimuLearn accuracy versus real grids shown in the

(A) lampshade and (B) aggregated table design. (units: mm)

Compared to physical prototyping, SimuLearn allows users

to preview a grid’s transformation x9000 faster (90 minutes

for printing and triggering the grid shown in Figure 11). As

for accuracy, since vertex coordinates are unavailable, we

measure the distances between several feature point pairs and

report the mean error to be 2.22% for the grids shown in

Design Examples (Figure 12), anecdotally implying a

97.78% accuracy with respect to the physical truth. While

this number is inconclusive due to the limited number of

samples, the error is lower than the fabrication error. Thus, it
is sufficiently accurate to support design tools and tasks. In

terms of smoothness, Figure 1C and 16B showed small

changes in design parameters would not lead to drastic

changes in simulation results. A more comprehensive

experiment is also provided in the Supplementary Materials.

Design Tool Implementation and Supported Workflows

Forward Workflow

The design tool is implemented as a Rhinoceros 3D and

grasshopper script, such that users can model and simulate

the grids in a single environment and generate fabrication

files. When forward-designing a 2x2 grid, users can initialize

its shape by choosing from a predefined library or by

drawing the grid’s skeleton as polylines (Figure 13A) and

assigning actuators to beams (Figure 13B). Simultaneously,

a validation subroutine will check the design against

topological constraints imposed by the material system and
the dataset to ensure its compatibility with the simulator

(Figure 15). Once validated, users can then use SimuLearn

to predict the grids’ transformation and navigate between

each timestep with a slide bar (Figure 13C). Users can make

design decisions and manual iterations based on the

simulation results, but the design tool also has a set of

functions to assist users in achieving desired transformations

(Figure 14). Once completed, the tool then processes the

model design into G-code files for fabrication (Figure 13D).

Figure 13. A forward design workflow - (A) initializing a grid

by sketching its skeleton, (B) assigning actuators and fixed

joints, (C) simulating transformation, and (D) export print files.

Inverse and Hybrid Workflow

In an inverse or hybrid design workflow, following the

initialization of grid design, the user can specify vertex

transformation goals as target points to the design tool

(Figure 14A). The design tool then modifies each of the

parameters (i.e., changing beam actuator assignments by ±

0.25 or moving joint positions along octagonal directions

with a specified distance) to generate design variations,

batch-simulates their transformations, and compares the
results against the target points to rank the effectiveness of

design modifications. The rankings are determined by the

averaged distance between target point pairs. In a hybrid

design workflow, the top-five modifications are presented to

the user to choose from (Figure 14B). In contrast, the top-

ranked update is automatically applied (Figure 1C) in an

inverse design workflow. These steps can be repeated for as

many times as the user specifies, and each epoch can be

completed in near real-time (2 seconds for simulation and

ranking, 8 seconds for rendering the interface). Qualitatively

speaking, this gradient-free, brute-force method provides a

simple yet effective way to perform design optimization.

Figure 14. Inverse and hybrid design workflows. (A) User

specifying transformation goals in the design tool. (B) The

design tool suggesting ranked design modifications for the user.

Design Validation

During the modeling step, the validation subroutine provides

visual cues to guide users to design grids that comply with

the material system’s intrinsic topology. The design tool

presents two types of messages to users: errors (Figure 15A,

B) that make the grid topologically incompatible with the

simulator and warnings (Figure 15C, D) that may affect

simulation accuracy. From a user’s perspective, error

messages will block the simulator from running until

addressed, whereas warning messages will only prompt users

to modify but do not hinder simulation.

Figure 15. Validation messages showing (A) joint configuration

error, (B) actuator length error, (C) beam length warning, and

(D) grid size warning.

DESIGN EXAMPLES

We use three design examples to demonstrate the workflows

enabled by SimuLearn - inverse design of a lampshade,

hybrid design of an aggregated table, and forward design of

a decorative joinery. The lampshade example demands the

highest of simulation accuracy and smoothness due to the

optimization task, whereas the joinery requires the least as

simulations are only used to visualize transformations.

Inverse Design Workflow: Modularized Lampshade

SimuLearn’s accuracy affords design tasks that require high

precision, such as patching surfaces to form larger structures

[38]. In this example, the user first creates a surface model
of the lampshade, but its large dimension makes it difficult

to 4D print as a whole. Thus, the designer patches the surface

with three repeating modules to make it more fabricable.

Each module is fitted with a 2x2 grid (Figure 16A) by

specifying target points for vertices, and the design is carried

out using the design tool’s inverse design function (Figure

16B). Once optimized, the user then manually reorients the

modules back to the surface model to generate an assembly

preview. The design tool makes 22 iterations and explores

1,958 design variations in 12 minutes to bring the mean

fitting error to 4.44 mm (i.e., the distance between target
point pairs). Note that most of the computation time is used

to render results into the design interface and the actual

simulation time is less than 50 seconds.

Figure 16. Lampshade design - (A) design scheme, (B) selected

optimization epochs (epochs labeled at the bottom), and (C)

assembled and (D, E) illuminated lampshade.

Figure 16C-E shows the printed, actuated, and assembled

lampshade design. When comparing SimuLearn results with

the physical reality, the max errors are 3.95 mm (4.21%),
2.422 mm (3.30%), and 3.572 mm (3.57%) for the top,

middle, and bottom piece, respectively. The errors are

sufficiently small and the modules are assembled without

any noticeable issue. We report that the target shape is

unachievable using previous methods because its geometry

violates 4DMesh’s [41] algorithmic constraints. The folding-

or wire-based strategy of [1,40] also cannot produce artifacts

with sufficient structural strength. More, modularization also

helps to compartmentalize printing time and material usage,

thus helps to mitigate fabrication risks. This design also

shows that a fast and accurate simulator like SimuLearn can
help us produce larger-scaled 4D printing structures, further

advancing the fabrication flexibility of 4D printing.

Figure 17. Aggregated table design - (A) parametric design

scheme, (B) the hybrid design workflow to change the

aggregation’s shape, and (C) selected design variations.

Hybrid Design Workflow: Aggregated Table

This structure is created by connecting multiple cell-units to

create a ring and stacking several rings to form the entire

aggregation. A cell-unit is made of two intersecting 2x2

grids, and their tangential lines determine the contact angle θ

of the unit, which consequently decides the curvature of the

aggregation (Figure 17A). In this parametric scheme, the

designer cannot directly control the aggregation’s shape but

have to indirectly change the cell-unit contact angle instead

(Figure 17C). To do so, the designer uses the hybrid
workflow to specify the design tool to bring two vertices

closer or away from each other, then select from the ranked

modifications to update the cell-unit. During this co-design

process, the design tool suggests viable options based on the

simulation results, and the designer makes aesthetic

judgements to make sure the aggregation is aesthetically

consistent throughout the structure (Figure 17B). Parametric

design often requires high interactivity, and this modality of

morphing materials design is only achievable with

SimuLearn as a back-end engine. Other simulation methods

will either make the design workflow impractically slow or

lack the accuracy needed by parametric design schemes.

Figure 18. Aggregated table (A) side, (B) top, and (C) inside

view pictures, and (D) the weaving technique detail.

The final design is achieved after seven iterations over 15

minutes, in which only less than 1 minute is used for

simulations. The max error between SimuLearn predictions

and physical prototypes are 5.22 mm (8.02%) and 3.96 mm

(5.95%) for the grids in the unit. The table is assembled using
a Native American off-loom bead weaving technique (Figure

18). The level of detail and structural overhangs make this

design difficult to fabricate with conventional 3D printing

methods, and it would also be uneconomical to print using

dissolvable support materials. In total, sixty cell-units are

used in to produce a 52.6 cm tall, 46.8 cm wide structure.

Forward Design Workflow: Decorative Wood Joinery

In this example, the designer is tasked to create a 4D printed

diagonal support for a miter wood joint. The designer adopts

a forward design workflow by manually modeling the grids.

The simulations are used to avoid collisions, identify

insertion hole placements, and predict interlocking behaviors

(Figure 19A) between units. SimuLearn’s speed allows the

designer to make quick iterations and explore various design
options (Figure 19B). In total, the designer produces 4 design

variations (4-8 iterations each) in 25 minutes (1.5 minutes for

simulation and 22.5 minutes used for modeling).

The final design (Figure 19C-E) comprises three 2x2 grids

that interlock and fasten together by sequential actuation.

The centerpiece is first actuated and assembled into the wood

joint, then the two side pieces are actuated while being

inserted into the wood panels’ slits to fasten the structure

together. When compared to the physical reality, the max

simulation errors were 2.80 mm (8.44%) and 3.09 mm

(7.90%) for the center and side pieces, respectively.
Noticeably, due to the model’s large size, the corner joint

blocks appear distorted at the end of the simulation (Figure

19F), but the prediction result still captures the trend of

transformation and an approximative shape of the actuated

grid, thus satisfies the accuracy demand of this design task.

Figure 19. Wood joinery design - (A) Forward design scheme,

(B) selected design variation, (C, D) side views and (E) details

of the assembled design, and (F) transformation process.

LIMITATIONS

FEA Limitation

SimuLearn’s accuracy is limited by the data source and is

susceptible to the limitations of the FEA model. In this work,

although our FEA model is physically accurate, it does not

account for collisions during the transformation process.

Although these phenomena are unlikely to occur in our

material system due to their transformation capacity, future

work may take inspiration from [3] to take account for

collision and open new design spaces.

ML Simulator Accuracy

While our physical prototyping results showed that

SimuLearn’s speed and accuracy could readily support and

facilitate their design workflows and tasks, there is still room

for performance improvements. For instance, our current
method does not use the temporality of simulation trials to

train the model. Inspired by [34], we speculate that adopting

recurrent ML models may further improve the accuracy of

SimuLearn. Incorporating other ML techniques such as

encoder/decoder, system identification, or hierarchical

convolution [26] may also lead to improved performances.

Future works may also leverage our pipeline to generate

larger datasets in order to mitigate the dimension issue

observed in the decorative joinery design example.

Development Cost

SimuLearn trades development time for workflow

conveniences by using FEA to curate large datasets for

training ML-based simulators. In this work, we prioritize our

data generation for the design parameters that we deem most

important. To incorporating new design parameters,

developers would have to curate new datasets to update the

simulator. Indeed, when targeting at a more general design
space, methods that do not require training on any possible

topology may appear to be more economical. Yet, the

development cost of SimuLearn can also be easily justified

by its three-orders faster workflow acceleration and

parallelizability, especially when the design tool is mass-

deployed or repeatedly used. We also believe that SimuLearn

allows developers to compose augmentative design tools for

well-established morphing material systems like 4D printing,

thus contributing to the democratization of advanced

fabrication technologies.

FUTURE WORK

Generalizability and Scalability

While this work is adapted to a specific material system,

SimuLearn’s algorithm is also adaptable to other material

systems by exchanging the FEA model and/or the feature

representation. E.g., SimuLearn can adapt to Geodesy [12]
by describing the continuous shells as aggregations of

rectangular patches, which are then represented by their

corner points, or it can further adapt to Transformative

Appetite [42] by swapping the FEA model from stress-

release PLA to swelling gel. Existing works have also

validated the viability of ML-based physics in various

engineering and design contexts [49].

Figure 20. Simulation results of topologically mutated grids -

(A) a 2x2 grid with partial removal, (B) a 2x3 grid, and (C) a

3x3 grid. (orange: SimuLearn result, grey: FEA ground truth).

As for scalability, GCNs intrinsically generalize to designs

that have different numbers of units and are adaptable to

different length scales [3], and the only limitation is dataset

coverage. Anecdotally, we observe that the simulator can

generalize to unseen grid topologies (i.e., having missing or
extra beams) if their geometrical dimensions are within the

dataset’s coverage (Figure 20). Nevertheless, SimuLearn can

also be trained to tackle topologically larger grids (e.g., a 4x4

grid) by expanding the dataset to cover targeted topologies

and increasing the degree of convolution in the ML

architecture. Note that the computation speed would remain
identical because the elementwise transformations can be

computed in parallel. We speculate that while adapting

SimuLearn to larger grids would quadratically scale up the

parameter space (i.e., elements may locate further from the

fixed joint and be subjected to higher magnitudes of

stresses), the amount of element data available for training

MLPs would also increase quadratically. Thus, it may be

possible to achieve an identical accuracy using the same

amount of FEA trials — though further research is necessary

in order to validate this conjecture. Nonetheless, we argue

that while the simulator is limited to 2x2 grids, its speed and

accuracy affords users to design larger structures using a
modularization approach with even higher efficiency than

previous work [41].

SimuLearn-Based Design Agents

Currently, the inverse design function optimizes the model

with an unguided brute-force approach. Future works may

consider using different optimization approaches to achieve

better results. In particular, SimuLearn’s parallelizability and

speed lend itself well to genetic algorithms and evolutionary

computing that require frequent performance evaluations.

More than being faster, SimuLearn also enables converting

indifferentiable simulations like FEA into differentiable

computations, which can be leveraged to create gradient-

based optimizers. Similar methods have also been shown in
robotics for efficient control policy-finding [4] and co-design

[14]. Situating this concept in HCI, SimuLearn as a backend

engine will allow CAD tools to simulate, evaluate, and

suggest designs in real-time to inform high-quality decisions.

With SimuLearn’s debut, we also envision conversational

design agents to emerge in the shape-changing interfaces and

morphing materials context.

CONCLUSION

SimuLearn combines FEA and ML to enable physically

accurate and real-time simulations for morphing materials.

Results show that SimuLearn is nearly as accurate as state-

of-the-art methods while being orders of magnitude faster. It

also enables design tools to become multimodal platforms

that support a broad spectrum of design workflows. Beyond
the grid- and PLA-based material system presented in this

paper, we also believe that SimuLearn can generalize to other

topological patterns or morphing materials by swapping the

representation and FEA model.

SimuLearn, as an enabling technology, is particularly well-

suited for the HCI community. Not only because of its

effectiveness in improving design efficiency, but also

because its interactivity allows users and computers to co-

design, paving the way for human-AI collaborations to

unfold in the design field. We also believe that SimuLearn

can augment morphing material CAD tools to become

conversational, educative, and accessible to the public. As

the HCI community accumulates growing interests toward

harnessing active material behaviors, SimuLearn will likely

enrich the available design and technology toolbox and

empower us to unfold the potentials of active, smart, and
morphable materials. With this vision, we seek to

democratize SimuLearn by sharing its source codes at

https://github.com/morphing-matter-lab/SimuLearn.

ACKNOWLEDGEMENT

This research was supported by the Carnegie Mellon

University Manufacturing Future Initiative, made possible

by the Richard King Mellon Foundation. We thank Angran

Li, Daniel Cardoso Llach, Guanyun Wang, Ardavan Bidgoli,

and Michael Rivera for providing feedback during the

conceptualization stage. We would also like to acknowledge

Jesse Gonzalez, Alex Cabrera, and the reviewers’ comments

that helped to improve the quality of this paper.

REFERENCES

[1] Byoungkwon An, Ye Tao, Jianzhe Gu, Tingyu Cheng,

Xiang Chen, Xiaoxiao Zhang, Wei Zhao, Youngwook

Do, Shigeo Takahashi, Hsiang Yun Wu, Teng Zhang,
and Lining Yao. 2018. Thermorph: Democratizing 4D

printing of self-folding materials and interfaces. In

Conference on Human Factors in Computing Systems -

Proceedings, 1–12.

DOI:https://doi.org/10.1145/3173574.3173834

[2] Jernej Barbič, Funshing Sin, and Eitan Grinspun. 2012.

Interactive editing of deformable simulations. ACM

Trans. Graph. 31, 4 (2012), 1–8.

DOI:https://doi.org/10.1145/2185520.2185566

[3] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo

Rezende, and Koray Kavukcuoglu. 2016. Interaction

networks for learning about objects, relations and

physics. In Advances in Neural Information Processing

Systems, 4502–4510.

[4] Filipe de A. Belbute-Peres, Kelsey R. Allen, Kevin A.

Smith, Joshua B. Tenenbaum, and J. Zico Kolter. 2018.

End-to-end differentiable physics for learning and

control. In Advances in Neural Information Processing

Systems, 7178–7189.

[5] Miklós Bergou, Basile Audoly, Etienne Vouga, Max
Wardetzky, and Eitan Grinspun. 2010. Discrete viscous

threads. ACM SIGGRAPH 2010 Pap. SIGGRAPH 2010

29, 4 (2010), 1–10.

DOI:https://doi.org/10.1145/1778765.1778853

[6] M. Bodaghi, A. R. Damanpack, and W. H. Liao. 2016.

Self-expanding/shrinking structures by 4D printing.

Smart Mater. Struct. 25, 10 (2016), 105034.

DOI:https://doi.org/10.1088/0964-1726/25/10/105034

[7] M. Bodaghi, A. R. Damanpack, and W. H. Liao. 2018.

Triple shape memory polymers by 4D printing. Smart

Mater. Struct. 27, 6 (2018), 065010.

DOI:https://doi.org/10.1088/1361-665X/aabc2a

https://github.com/morphing-matter-lab/SimuLearn

[8] Mahdi Bodaghi, Reza Noroozi, Ali Zolfagharian,

Mohamad Fotouhi, and Saeed Norouzi. 2019. 4D

printing self-morphing structures. Materials (Basel).

12, 8 (2019), 1353.

DOI:https://doi.org/10.3390/ma12081353

[9] Desai Chen, David I.W. Levin, Wojciech Matusik, and

Danny M. Kaufman. 2017. Dynamics-aware numerical

coarsening for fabrication design. ACM Trans. Graph.

36, (2017), 1–15.

DOI:https://doi.org/10.1145/3072959.3073669

[10] Desai Chen, David I.W. Levin, Shinjiro Sueda, and

Wojciech Matusik. 2015. Data-driven finite elements

for geometry and material design. ACM Trans. Graph.

34, 4 (2015), 1–10.

DOI:https://doi.org/10.1145/2766889

[11] Xiang Chen, Ye Tao, Guanyun Wang, Runchang Kang,

Tovi Grossman, Stelian Coros, and Scott E. Hudson.
2018. Forte: User-driven generative design. In

Conference on Human Factors in Computing Systems -

Proceedings, 1–12.

DOI:https://doi.org/10.1145/3173574.3174070

[12] Jianzhe Gu, David E. Breen, Jenny Hu, Lifeng Zhu, Ye

Tao, Tyson Van De Zande, Guanyun Wang, Yongjie

Jessica Zhang, and Lining Yao. 2019. Geodesy: Self-
rising 2.5D Tiles by Printing along 2D Geodesic

Closed Path. In Conference on Human Factors in

Computing Systems - Proceedings, 1–10.

DOI:https://doi.org/10.1145/3290605.3300267

[13] Daniel Holden, Bang Chi Duong, Sayantan Datta, and

Derek Nowrouzezahrai. 2019. Subspace neural

physics: Fast data-driven interactive simulation. In

Proceedings - SCA 2019: ACM SIGGRAPH /
Eurographics Symposium on Computer Animation, 1–

12. DOI:https://doi.org/10.1145/3309486.3340245

[14] Yuanming Hu, Jiancheng Liu, Andrew Spielberg,

Joshua B. Tenenbaum, William T. Freeman, Jiajun

Wu, Daniela Rus, and Wojciech Matusik. 2019.

ChainQueen: A real-time differentiable physical

simulator for soft robotics. In Proceedings - IEEE

International Conference on Robotics and Automation.

DOI:https://doi.org/10.1109/ICRA.2019.8794333

[15] Alexandra Ion, Johannes Frohnhofen, Ludwig Wall,

Robert Kovacs, Mirela Alistar, Jack Lindsay, Pedro

Lopes, Hsiang Ting Chen, and Patrick Baudisch. 2016.

Metamaterial mechanisms. In UIST 2016 - Proceedings

of the 29th Annual Symposium on User Interface

Software and Technology, 529–539.

DOI:https://doi.org/10.1145/2984511.2984540

[16] Alexandra Ion, David Lindlbauer, Philipp Herholz,

Marc Alexa, and Patrick Baudisch. 2019.

Understanding metamaterial mechanisms. In

Conference on Human Factors in Computing Systems -

Proceedings, 1–14.

DOI:https://doi.org/10.1145/3290605.3300877

[17] Robert Kovacs, Alexandra Ion, Pedro Lopes, Tim

Oesterreich, Johannes Filter, Philip Otto, Tobias Arndt,

Nico Ring, Melvin Witte, Anton Synytsia, and Patrick

Baudisch. 2018. TrussFormer: 3D printing large kinetic

structures. In UIST 2018 - Proceedings of the 31st
Annual ACM Symposium on User Interface Software

and Technology, 113–125.

DOI:https://doi.org/10.1145/3242587.3242607

[18] Robert Kovacs, Anna Seufert, Ludwig Wall, Hsiang

Ting Chen, Florian Meinel, Willi Müller, Sijing You,

Maximilian Brehm, Jonathan Striebel, Yannis

Kommana, Alexande Popiak, Thomas Bläsius, and

Patrick Baudisch. 2017. TrussFab: Fabricating sturdy
large-scale structureson desktop 3D printers. In

Conference on Human Factors in Computing Systems -

Proceedings, 2606–2616.

DOI:https://doi.org/10.1145/3025453.3026016

[19] Yuki Koyama, Shinjiro Sueda, Emma Steinhardt,

Takeo Igarashi, Ariel Shamir, and Wojciech Matusik.

2015. AutoConnect: Computational design of 3D-
printable connectors. ACM Trans. Graph. 34, 6 (2015),

1–11. DOI:https://doi.org/10.1145/2816795.2818060

[20] L’ubor Ladický, Sohyeon Jeong, Barbara Solenthaler,

Marc Pollefeys, and Markus Gross. 2015. Data-driven

Fluid Simulations using Regression Forests. ACM

Trans. Graph. 34, 6 (2015), 1–9.

DOI:https://doi.org/10.1145/2816795.2818129

[21] Angran Li, Ruijia Chen, Amir Barati Farimani, and

Yongjie Jessica Zhang. 2020. Reaction diffusion

system prediction based on convolutional neural

network. Sci. Rep. 10, 3894 (2020).

DOI:https://doi.org/10.1038/s41598-020-60853-2

[22] Liang Liang, Minliang Liu, Caitlin Martin, and Wei

Sun. 2018. A deep learning approach to estimate stress

distribution: a fast and accurate surrogate of finite-

element analysis. J. R. Soc. Interface 15, 138 (2018),

20170844. DOI:https://doi.org/10.1098/rsif.2017.0844

[23] Li Ke Ma, Yizhong Zhang, Yang Liu, Kun Zhou, and

Xin Tong. 2017. Computational design and fabrication

of soft pneumatic objects with desired deformations.
ACM Trans. Graph. 36, 6 (2017), 1–12.

DOI:https://doi.org/10.1145/3130800.3130850

[24] Jose D. Martin-Guerrero, Maria J. Ruperez-Moreno,

Francisco Martinez-Martinez, Delia Lorente-Garrido,

Antonio J. Serrano-Lopez, Carlos Monserrat, Sandra

Martinez-Sanchis, and Marcelino Martinez-Sober.

2016. Machine Learning for Modeling the
Biomechanical Behavior of Human Soft Tissue. In

IEEE International Conference on Data Mining

Workshops, ICDMW, 247–253.

DOI:https://doi.org/10.1109/ICDMW.2016.0042

[25] Justin Matejka, Michael Glueck, Erin Bradner, Ali

Hashemi, Tovi Grossman, and George Fitzmaurice.

2018. Dream lens: Exploration and visualization of

large-scale generative design datasets. In Conference

on Human Factors in Computing Systems -

Proceedings, 1–12.

DOI:https://doi.org/10.1145/3173574.3173943

[26] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick

Haber, Li Fei-Fei, Joshua B. Tenenbaum, and Daniel

L.K. Yamins. 2018. Flexible neural representation for

physics prediction. In Advances in Neural Information

Processing Systems, 1–12.

[27] Zhenguo Nie, Haoliang Jiang, and Levent Burak Kara.

2019. Stress field prediction in cantilevered structures

using convolutional neural networks. Proc. ASME Des.

Eng. Tech. Conf. 59179, (2019).

DOI:https://doi.org/10.1115/1.4044097

[28] Martin Nisser, Junyi Zhu, Tianye Chen, Katarina

Bulovic, Parinya Punpongsanon, and Stefanie Mueller.

2019. Sequential support: 3D printing dissolvable
support material for time-dependent mechanisms. In

TEI 2019 - Proceedings of the 13th International

Conference on Tangible, Embedded, and Embodied

Interaction, 669–676.

DOI:https://doi.org/10.1145/3294109.3295630

[29] O. Kononenko and I. Kononenko. 2018. Machine

Learning and Finite Element Method for Physical
Systems Modeling. arXiv [cs.CE]. Retrieved from

http//arxiv.org/abs/1801.07337 (2018).

[30] George Papazafeiropoulos, Miguel Muñiz-Calvente,

and Emilio Martínez-Pañeda. 2017. Abaqus2Matlab: A

suitable tool for finite element post-processing. Adv.

Eng. Softw. 105, (2017), 9–16.

DOI:https://doi.org/10.1016/j.advengsoft.2017.01.006

[31] Jesús Pérez, Bernhard Thomaszewski, Stelian Coros,

Bernd Bickel, José A. Canabal, Robert Sumner, and

Miguel A. Otaduy. 2015. Design and fabrication of

flexible rod meshes. In ACM Transactions on

Graphics, 1–12. DOI:https://doi.org/10.1145/2766998

[32] Dan Raviv, Wei Zhao, Carrie McKnelly, Athina

Papadopoulou, Achuta Kadambi, Boxin Shi, Shai

Hirsch, Daniel Dikovsky, Michael Zyracki, Carlos

Olguin, Ramesh Raskar, and Skylar Tibbits. Author

Correction: Active printed materials for complex self-

evolving deformations. Sci. Reports. 8, 15485 .

DOI:https://doi.org/10.1038/srep07422

[33] Junuthula Narasimha Reddy. 2014. An Introduction to

Nonlinear Finite Element Analysis: With Applications

to Heat Transfer, Fluid Mechanics, and Solid

Mechanics. Oxford University Press, USA.

[34] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias

Springenberg, Josh Merel, Martin Riedmiller, Raia

Hadsell, and Peter Battaglia. 2018. Graph networks as

learnable physics engines for inference and control. In
35th International Conference on Machine Learning,

ICML 2018.

[35] Valkyrie Savage, Ryan Schmidt, Tovi Grossman,

George Fitzmaurice, and Björn Hartmann. 2014. A

Series of tubes: Adding interactivity to 3D prints using

internal pipes. In UIST 2014 - Proceedings of the 27th

Annual ACM Symposium on User Interface Software
and Technology, 3–12.

DOI:https://doi.org/10.1145/2642918.2647374

[36] Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan

Grinspun, and Wojciech Matusik. 2017. Interactive

design space exploration and optimization for CAD

models. ACM Trans. Graph. 36, 4 (2017), 1–14.

DOI:https://doi.org/10.1145/3072959.3073688

[37] Ye Tao, Youngwook Do, Humphrey Yang, Yi Chin

Lee, Guanyun Wang, Catherine Mondoa, Jianxun Cui,

Wen Wang, and Lining Yao. 2019. Morphlour:

Personalized flour-based morphing food induced by

dehydration or hydration method. In UIST 2019 -

Proceedings of the 32nd Annual ACM Symposium on

User Interface Software and Technology, 329–340.

DOI:https://doi.org/10.1145/3332165.3347949

[38] Ye Tao, Guanyun Wang, Caowei Zhang, Nannan Lu,

Xiaolian Zhang, Cheng Yao, and Fangtian Ying. 2017.

WeaveMesh: A low-fidelity and low-cost prototyping

approach for 3D models created by flexible assembly.

In Conference on Human Factors in Computing

Systems - Proceedings, 509–518.

DOI:https://doi.org/10.1145/3025453.3025699

[39] Guanyun Wang, Tingyu Cheng, Youngwook Do,

Humphrey Yang, Ye Tao, Jianzhe Gu, Byoungkwon

An, and Lining Yao. 2018. Printed paper actuator: A

low-cost reversible actuation and sensing method for

shape changing interfaces. In Conference on Human

Factors in Computing Systems - Proceedings, 1–12.

DOI:https://doi.org/10.1145/3173574.3174143

[40] Guanyun Wang, Ye Tao, Ozguc Bertug Capunaman,

Humphrey Yang, and Lining Yao. 2019. A-line: 4D

Printing Morphing Linear Composite Structures. In

Conference on Human Factors in Computing Systems -

Proceedings, 1–12.

DOI:https://doi.org/10.1145/3290605.3300656

[41] Guanyun Wang, Humphrey Yang, Zeyu Yan, Nurcan

Gecer Ulu, Ye Tao, Jianzhe Gu, Levent Burak Kara,

and Lining Yao. 2018. 4DMesh: 4D printing morphing

non-developable mesh surfaces. In UIST 2018 -

Proceedings of the 31st Annual ACM Symposium on

User Interface Software and Technology, 623–635.

DOI:https://doi.org/10.1145/3242587.3242625

[42] Wen Wang, Lining Yao, Teng Zhang, Chin Yi Cheng,

Daniel Levine, and Hiroshi Ishii. 2017. Transformative

appetite: Shape-changing food transforms from 2D to

3D by water interaction through cooking. In

Conference on Human Factors in Computing Systems -

Proceedings, 6123–6132.

DOI:https://doi.org/10.1145/3025453.3026019

[43] Paul Worgan, Kevin Reuss, and Stefanie Mueller.

2019. Integrating electronic components into

deformable objects based on user interaction data. In

TEI 2019 - Proceedings of the 13th International

Conference on Tangible, Embedded, and Embodied
Interaction, 345–350.

DOI:https://doi.org/10.1145/3294109.3295629

[44] Hongyi Xu, Yijing Li, Yong Chen, and Jernej Barbič.

2015. Interactive material design using model

reduction. ACM Trans. Graph. 34, 2 (2015), 1–14.

DOI:https://doi.org/10.1145/2699648

[45] Jiaxian Yao, Danny M. Kaufman, Yotam Gingold, and

Maneesh Agrawala. 2017. Interactive design and

stability analysis of decorative joinery for furniture.

ACM Trans. Graph. 36, 2 (2017), 1–16.

DOI:https://doi.org/10.1145/3054740

[46] Lining Yao, Jifei Ou, Chin Yi Cheng, Helene Steiner,
Wen Wang, Guanyun Wang, and Hiroshi Ishii. 2015.

Biologic: Natto cells as nanoactuators for shape

changing interfaces. In Conference on Human Factors

in Computing Systems - Proceedings, 1–10.

DOI:https://doi.org/10.1145/2702123.2702611

[47] Yuxuan Yu, Haolin Liu, Kuanren Qian, Humphrey

Yang, Matthew McGehee, Jianzhe Gu, Danli Luo,

Lining Yao, and Yongjie Jessica Zhang. 2020. Material

characterization and precise finite element analysis of

fiber reinforced thermoplastic composites for 4D
printing. CAD Comput. Aided Des. 10, 1 (2020), 3894.

DOI:https://doi.org/10.1016/j.cad.2020.102817

[48] Jonas Zehnder, Espen Knoop, Moritz Bächer, and

Bernhard Thomaszewski. 2017. MetaSilicone: Design

and fabrication of composite silicone with desired

mechanical properties. ACM Trans. Graph. 36, 6

(2017), 1–13.

DOI:https://doi.org/10.1145/3130800.3130881

[49] Guo Zhang, Hao He, and Dina Katabi. 2019. Circuit-

GNN: Graph neural networks for distributed circuit

design. In 36th International Conference on Machine

Learning, ICML 2019, 7364–7373.

[50] Quan Zhang, Kai Zhang, and Gengkai Hu. 2016. Smart

three-dimensional lightweight structure triggered from

a thin composite sheet via 3D printing technique. Sci.

Rep. 6, 22431 (2016).

DOI:https://doi.org/10.1038/srep22431

